

Блочная тепловая электростанция - электроэнергия и тепло из природного газа Высокая эффективность благодаря сопряжению электроэнергии и тепла Общий коэффициент полезного действия до 96 % Экономия первичной энергии до 27,5 %

Техническое описание

VITOBLOC 200 Тип EM-238/363

Блочная тепловая электростанция для работы на природном газе

соответствует требованиям директивы ЕС по газовым приборам и директивы ЕС по машинам

Электрическая мощность 238 кВт Тепловая мощность 363 кВт Потребляемая мощность 667 кВт

Выходные данные

Устройство соответствует основополагающим требованиям применяемых стандартов и директив. Соответствие подтверждено. Соответствующие документы и оригинал декларации о соответствии хранятся у производителя.

УКАЗАНИЕ!

Модуль БТЭС Vitobloc 200 не пригоден для эксплуатации при 60 Гц. Поэтому он, в частности, не поставляется на рынок США и Канады.

Важные общие указания по применению

Техническое устройство должно использоваться только по назначению и с соблюдением руководства по монтажу, руководства по эксплуатации и руководства по обслуживанию. Техобслуживание и ремонт должны производить только авторизованные специалисты.

Техническое устройство эксплуатируется только в комбинациях, с принадлежностями и запчастями, которые указаны в руководствах по монтажу, эксплуатации и обслуживанию. Прочие комбинации, принадлежности и быстроизнашивающиеся части использовать только в том случае, если они однозначно предназначены для предусмотренного случая использования и не нарушают рабочие характеристики, а также требования безопасности.

Мы оставляем за собой право на технические изменения!

Данный документ является частью оригинального руководства по эксплуатации.

В результате постоянной модернизации возможны незначительные отличия в рисунках, рабочих шагах и технических характеристиках.

Обновление документации

Пожалуйста, свяжитесь с нами, если у вас есть предложения по улучшению или вы обнаружили несоответствия.

info@ess-landsberg.de

Тел. 08191 / 9279-0

Обозначение указаний

Данные указания в документации служат целям безопасности и требуют соблюдения.

ОПАСНОСТЬ!

Этот знак предупреждает об угрозе травмирования.

ВНИМАНИЕ!

Этот знак предупреждает об угрозе материального и экологического ущерба.

УКАЗАНИЕ!

Этим символом обозначаются указания, предназначенные для облегчения работы и более надежной эксплуатации.

Оглавление

1	Общие положения	4
1.1 1.2	Продолжительная эксплуатация в параллельном режиме работы с сеть Режим резервного источника электропитания	
1.3	Выбросы вредных веществ	
1.4	Энергетический баланс	
2	Описание продукта	7
2.1	Газовый двигатель внутреннего сгорания с принадлежностями	7
2.2	Муфта	
2.3	Синхронный генератор переменного тока	
2.4	Опорная рама	
2.5	Трубопроводы	
2.6	Система теплообменников	
2.7	Система очистки отработанных газов	
2.8 2.9	Система подачи смазочного масла	
2.9 2.10	ОПЦИЯ: шумопоглощающий кожух и вытяжной вентиляторПринадлежности базовой комплектации	
2.10 2.11	тринадлежности оазовои комплектацииКонтрольные устройства	
2.12	Шкаф управления	
2.13	Контрольный перечень для работы в режиме резервного источника электропитания	
3	Техобслуживание и восстановительный ремонт	18
3.1	Список работ по техобслуживанию и восстановительному ремонту	19
4	Технические характеристики	21
4.1	Рабочие параметры модуля БТЭС в комплекте	21
4.2	Технические характеристики модуля БТЭС в комплекте	
4.3	Габариты, вес и цвета	25
4.4	Монтаж	
4.5	Соотношение пуск/останов	26
5	Общие указания по проектированию и эксплуатации	28
6	Предметный указатель	29
7	Декларация о соответствии	30
Q	Кратуаа инструкциа	31

Общие положения

1 Общие положения

Модуль блочной тепловой электростанции (модуль БТЭС) - это готовый к подключению узел в сборе, оснащенный синхронным генератором с воздушным охлаждением для создания переменного тока 400 В, 50 Гц и сетевой воды с уровнем температуры "подача/возврат" - 90/70 °C

при полной нагрузке и стандартном перепаде температур 20 К. Каждый модуль БТЭС может эксплуатироваться в зависимости от тепловой или электрической нагрузки в диапазоне электрической нагрузки 50 – 100% (соответствует 60 – 100% тепловой мощности).

	Базовый объем поставк	ки – серийное оснащение
-	Система очистки отработанных газов для достижения значений NOx согласно стандарту TA-Luft 2002 (в новом устройстве NOx<125 мг/м³, CO<150 мг/м³)	- Компактно интегрированное в модуль БТЭС распределительное устройство. Не требуется дополнительного места и дополнительных кабелей.
-	Интерфейс передачи данных DDC для передачи параметров БТЭС системе управления инженерным оборудованием здания в виде аппаратного модуля RS 232 с протоколом передачи данных 3964 R (без RK512).	- Распределительное устройство, включая силовую часть генератора, блок управления, контроля и вспомогательного привода, а также микропроцессорную систему управления.
-	Документация согл. DIN 6280 часть 14 на носителе данных (PDF)	 Независимая смазочная система с резервным баком для смазочного масла, рассчитана на ≥ 1 интервал техобслуживания.
-	Память ошибок для регистрации всей цепи ошибок с рабочими параметрами для целенаправленного анализа неисправностей.	- Система пуска с зарядным устройством и вибропрочными необслуживаемыми батареями.
-	Система дистанционного управления с клеммами для передачи сообщений о системных и общих неисправностях через беспотенциальные контакты в систему управления инженерным оборудованием здания.	- Синхронный генератор переменного тока с малым содержанием гармоник для опционального режима работы в качестве резервного источника питания в изолированной сети
-	Газовый двигатель внутреннего сгорания от завода-производителя. Не рекомендуется использовать газифицированный двигатель или двигатель собственной разработки.	- Теплообменник сконструирован и проверен в соответствии с директивой для напорных устройств 97/23/EG. Рабочее давление обогрева, макс. 10 бар.
-	Газовая рампа согл. DVGW и DIN 6280 часть 14, включая термический запорный клапан и газовый шаровой кран	- Заводские испытания БТЭС в сборке (двигатель-генератор-теплообменник-шкаф управления) согл. DIN 6280, часть 15.
-	Память событий – электронный журнал для непрерывной регистрации важнейших рабочих параметров.	- Защита теплообменника отработанных газов от отключения по причине плохого качества сетевой воды, коррозии и кавитации путем интеграции во внутренний контур охлаждения двигателя.
-	Конструкция согл. директиве по газовым приборам 90/396/EWG и согл. директиве EC по машинам, изготовление согл. DIN ISO 9001.	- Откалиброванный электрический счетчик и эластичные соединения входят в объем поставки.

Таб. 1 Базовый объем поставки, серийное оснащение

Общие положения

1.1 Продолжительная эксплуатация в параллельном режиме работы с сетью

Показатели производительности и КПД см. стр. 21

Показатели производительности и КПД соответствуют стандарту DIN ISO 3046/1, при температуре воздуха 25 °C, давлении воздуха 100 кПа (при установочной высоте до 100 м над уровнем моря), относительной влажности воздуха 30%, метановом числе 80 и коэффициенте реактивной мощности cos phi = 1. Допуск для всех значений КПД и тепловой мощности составляет 7%. Для значений расхода энергии допуск составляет 5 %.

Все остальные данные по модулю БТЭС указаны для параллельного режима работы с сетью. Данные для диапазона частичных нагрузок предоставляются в информативном порядке; в соответствии с ISO и DIN без гарантии.

Возможны высокие температуры обратной воды до 90 / 75 °C, например, для работы в абсорбционной холодильной установке.

Внимание!

При высоких температурах обратной воды тепловая мощность понижается на 5% при равном использовании энергии.

В зависимости от состояния возможны дополнительные затраты на техобслуживание вследствие тепловой нагрузки на моторное масло.

Используйте только допустимое топливо - природный газ - согл. директиве DVGW, рабочий лист G260, семейство газов 2, группа L. По запросу предоставляются все необходимые данные для газа другого качества и других условий монтажа

Коэффициент тока

Модуль БТЭС является серийным продуктом с номером изделия (СЕ-0433ВТ0002) согл. директиве по газовым приборам без устройств отвода тепла.

Коэффициент тока определен в рабочем листе AGFW FW308 как показатель электрической мощности, поделенный на тепловую мощность. Значение согл. таблицам 6 (стр. 21) находится в определенном диапазоне между 0,5 и 0,9 для когенерационных установок с двигателями внутреннего сгорания.

Коэффициент использования первичной энергии **ENEV 2007**

Коэффициент использования первичной энергии (обозначается знаком »fp«) указывает соотношение использованной первичной энергии и отданной конечной энергии, при этом в этом коэффициенте учтено не только преобразование энергии, но и передача. Иными словами это означает, что чем ниже коэффициент использования первичной энергии, тем лучше это сказывается при определении годового расхода первичной энергии. Чем экологичнее форма используемой энергии и способ ее преобразования. тем ниже коэффициент использования первичной энергии.

Экономия первичной энергии согласно директиве ЕС п3о когенерации

Показатель экономии первичной энергии - это экономия топлива в процентном отношении вследствие одновременного получения энергии и тепла в процессе выработки электроэнергии и тепла по сравнению с расходом тепла в системах без совмещения функций генерации тепла и электроэнергии.

Расчетная формула указана в приложении III директивы EC 2004/8/EG о продвижении ориентированной на расход полезного тепла теплоэлектроцентрали.

Режим резервного источника электропитания

В соответствующем конструктивном исполнении главного распределителя низкого напряжения (ГРНН) со стороны заказчика модули БТЭС можно применять также в качестве резервного источника электропитания в случае сбоя в электросети при работе в режиме резервного источника электропитания.

Если сбой в электросети произошел при неработающей БТЭС, то запуск и автоматическое подключение к резервной шине первого модуля БТЭС могут быть произведены в течение 15 секунд.

Для того чтобы в режиме резервного источника электропитания иметь достаточно резерва для регулирования, необходимо снизить мощность на 10%. Подключение потребителей резервного питания должно осуществляться в ступенчатом режиме (например, 40% - 40% - 10%).

Температура сетевой воды в обратной линии не должна превышать 65°C ни в режиме резервного источника электропитания, ни в параллельном режиме работы с сетью.

Функция режима резервного источника электропитания не может использоваться в случае работы абсорбционной холодильной установки.

1.3 Выбросы вредных веществ

Следующие эмиссионные показатели после очистки отработанных газов указаны для сухих ОГ при остаточном содержании кислорода 5 %.

Эмиссионны	е показатели
Содержание NO _{x*,} измерено как NO ₂	< 125 мг/Нм³
Содержание СО*	< 150 мг/Нм³ < 181 мг/кВтч
Формальдегид CH₂O	< 60 мг/Нм³

^{*} Эмиссионные показатели согласно ½-TA-Luft

Таб. 2 Эмиссионные показатели после очистки ОГ

Общие положения

1.4 Энергетический баланс

Энергетический баланс графически отображает поток энергии модуля БТЭС.

Энергетический баланс наглядно демонстрирует преобразование первичной энергии (природный газ, 100%) в электрическую и тепловую полезную энергию. Также отображены возникающие в ходе данного преобразования потери.

Электрическая полезная энергия возникает в результате процесса сгорания в газовом двигателе внутреннего сгорания и посредством его вращательного движения преобразуется с

помощью синхронного генератора в электрический ток.

Тепловая полезная энергия возникает также в результате процесса сгорания в газовом двигателе внутреннего сгорания. Она расходуется на тепло ОГ, коллектор, блок двигателя и смазочную систему двигателя и предназначена для нагрева, например, сетевой воды.

Общий КПД модуля БТЭС получается из суммы электрической и тепловой полезной энергии.

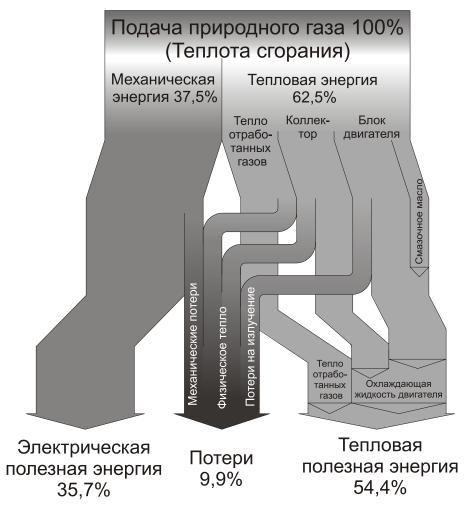


Рис. 1 Энергетический баланс модуля БТЭС

Модуль БТЭС состоит из различных узлов и частей, описание которых вы найдете в данной главе. Узлы и детали входят в объем поставки модуля БТЭС.

2.1 Газовый двигатель внутреннего сгорания с принадлежностями

2.1.1 Газовый ДВС

Газовый двигатель внутреннего сгорания используется в качестве ДВС (со свободным впуском) без турбонаддува с коэффициентом избытка воздуха (лямбда) = 1.

Охлаждение днища поршня обеспечивается струей масла под давлением. Отработанные газы выводятся через выпускной коллектор с водяным охлаждением.

Компоненты

Картер и блок цилиндров представляют собой цельнолитой узел. Картер переходит в оба параллельных блока, по 6 цилиндров в каждом, расположенных V-образно. Гильзы цилиндров мокрого типа заменяемые и изготовлены из чугуна. Со стороны маховика картера расположен корпус редуктора. На нем крепится уплотнение коленчатого вала, ведущие шестерни для распределительного вала и масляный насос. Коленчатый вал из хроммолибденовой стали изготовлен методом штамповки и упрочненный нитридом. Он установлен соответственно в конце и между цилиндрами. Шатунные шейки предназначены для опоры шатуна.

Вкладыши подшипников из свинца/бронзы со свинцовым/индиевым покрытием и имеют стальную спинку. Шатуны также выполнены из хром-молибденовой стали, изготовлены штамповкой и установлены под углом.

Поршни изготовлены из алюминиевого сплава, имеющего незначительную степень расширения. Благодаря форме головки поршня образуется открытая камера сгорания. В головке поршня имеется три паза для поршневых колец. Распределительный вал изготовлен из чугуна/хромового сплава с закаленными кулачками и закреплен на концах и соответственно между поршнями.

VITORI OC 200 FM-238/363

Он расположен глубоко в картере. Головки из чугуна для каждого цилиндра закреплены на картере. Они имеют каналы охлаждения, отверстия для крепления свечей зажигания и по одному впускному и выпускному клапану для каждого цилиндра. Подвесные клапаны оснащены съемными направляющими.

2.1.2 Смазочная система двигателя

Двигатель смазывается с помощью циркуляционной системы смазки под давлением.

Из масляного поддона масло подается посредством шестереночного масляного насоса сначала в масляный радиатор, выполненный в виде трубчато-пластинчатого радиатора для масла/воды. Очистка смазочного масла осуществляется с помощью находящегося в основной магистрали картриджа масляного фильтра с бумажной вставкой. Оттуда происходит распределение отфильтрованного масла по различным масляным каналам.

Маслом смазываются подшипники коленчатого вала, шатунные подшипники и поршневой палец, опоры распределительного вала и коромысла. Смазка шестерней редуктора в картере осуществляется путем разбрызгиванием масла. Система вентиляции картера подсоединена к всасывающей линии воздуха для горения через маслоотделитель.

Компоненты

Смазочная система двигателя состоит из масляного поддона, масляного насоса, масляного фильтра с бумажной вставкой и различных масляных каналов.

Особенности

Система вентиляции картера подсоединена к всасывающей линии воздуха для горения через маслоотделитель.

2.1.3 Система охлаждения двигателя

Двигатель охлаждается с помощью замкнутого контура циркуляции воды.

Насос сначала подает охлаждающую жидкость через масляный радиатор в картер. С помощью интегрированных каналов для охлаждающей жидкости внутри картера обеспечивается охлаждение гильз и головок цилиндров. После прохождения по коллектору ОГ с водяным охлаждением охлаждающая жидкость снова выходит из двигателя.

Компоненты

Система охлаждения двигателя состоит из насоса с электроприводом, предохранительного клапана и мембранного расширительного бака.

Особенности

С помощью специальных мер, например, увеличения температуры в обратной линии или гидравлической схемы, двигатель следует защищать от слишком низких температур охлаждающей жидкости, возникающих в результате настройки слишком низкой температуры в обратной линии сетевой воды, или слишком большого объемного расхода сетевой воды. Гарантия не распространяется на случаи ущерба, возникшего в результате длительной эксплуатации при несоблюдении допустимых рабочих параметров.

2.1.4 Стартер

Стартер обеспечивает процесс пуска газового ЛВС.

Тяговое реле стартера служит как для перемещения шестерни в зубчатый венец двигателя при ее введении в зацепление, так и для замыкания контактного моста для включения основной магистрали стартера.

Привод механизма включения стартера устроен таким образом, что толкающие движения тягового реле и вращательные движения электродвигателя стартера могут накладываться при любой возможной ситуации введения в зацепление. Муфта свободного хода (обгонная муфта) действует таким образом, что при приведенном в движение вале якоря шестерня захватывается, а при вращающейся быстрее шестерне ("обгон") соединение между шестерней и валом якоря расцепляется.

Компоненты

Стартер оснащен тяговым реле и механизмом включения. Стартер с принудительным включением шестерни имеет питающее напряжение 24 В при потреблении мощности 6,5 кВт.

2.1.5 Стартерные аккумуляторные батареи

Для запуска двигателя стартер и система зажигания (24 В) снабжается электроэнергией от двух аккумуляторных батарей. Одновременно АКБ снабжают электроэнергией контрольные и регулировочные устройства (24 В).

Компоненты

Две АКБ (кислотные батареи 170 A ч, 2 × 12 В) являются необслуживаемыми и заполнены жидким электролитом.

Особенности

АКБ поставляются в сухом заряженном виде и заполняются электролитом перед введением блока БТЭС в эксплуатацию.

2.1.6 Фильтр воздуха для горения

Этот фильтр фильтрует подаваемый в газовый ДВС воздух для горения.

Компоненты

Фильтр воздуха для горения - это двухступенчатый воздухоочиститель с сухим фильтрующим элементом из полностью утилизируемого синтетического материала со сменным патроном бумажных фильтрующих элементов. Он встроен в линию подачи воздуха (на выходе фильтра). Максимальное разряжение перед газовым смесителем не должно превышать 30 мбар.

Особенности

Техобслуживание воздушного фильтра необходимо выполнять в соответствии с данными плана техобслуживания и с учетом особых условий в месте его установки.

2.1.7 Газовая рампа и газовоздушный смеситель

Газоснабжение модуля БТЭС осуществляется по газовой рампе с предохранительной арматурой (компоненты имеют допуск по DVGW) в модульном исполнении.

Газовоздушный смеситель с прифланцованной дроссельной заслонкой работает по принципу Вентури и смешивает газ с воздухом для горения.

Компоненты и функции

Газовая рампа интегрирована в модуль БТЭС согл. DIN 6280 часть 14 и состоит из:

- Газовый фильтр тонкой очистки (прилагается к комплекту поставки)

Газовый фильтр тонкой очистки защищает от загрязнения последовательно включенные устройства. Фильтровальный холст из полипропилена с неориентированным расположением волокон обеспечивает высокую пропускную способность, высокую степень очистки и продолжительный срок службы. Газовый фильтр тонкой очистки монтируется за пределами модуля.

- Эластичный шлангопровод из нержавеющей стали (прилагается к комплекту поставки)

Для устранения корпусного шума между газовым фильтром тонкой очистки и шаровым краном с термически срабатывающим блокирующим устройством.

- Шаровой кран с термически срабатывающим блокирующим устройством

Плавкая вставка фиксирует преднапряженный пружиной сжатия замыкающий элемент. При достижении температуры срабатывания 92-100 °C плавкий элемент освобождает замыкающий элемент. Он входит в закрывающий контур и образует посадку с натягом, которая сохраняется и в том случае, если нажимная пружина теряет свою силу под дальнейшим воздействием температуры.

- Реле давления газа для минимального давления

Реле давления газа предназначено для использования согл. DIN 3398 часть 1 и часть 2 и сконструировано для понижающегося давления.

- Два магнитных клапана

Два магнитных клапана выполнены в виде газовых предохранительных клапанов группы В согл. DIN 3391/3394, EN 161. Магнитные клапаны состоят из подпружиненной клапанной тарелки и фильтра для защиты седла клапана. Количество пускового газа и объемный расход можно настраивать. Клапан закрыт в обесточенном состоянии.

- Устройство для проверки герметичности

Оно состоит из контрольного электронного оборудования, устанавливаемого в шкаф управления модуля БТЭС, и реле давления. Устройство предназначено для газовых рамп с двумя предохранительными клапанами и проверяет перед включением и после выключения защитную функцию клапанов. Его задачей является обнаружение недопустимых

негерметичностей на одном из газовых клапанов и блокировка пуска БТЭС. Другой газовый клапан продолжит работать безупречно и возьмет на себя функцию надежной блокировки подачи газа.

- Регулятор нулевого давления для настройки на нулевое давление после газовой рампы

Регулятор нулевого давления поддерживает газовоздушную смесь в постоянном состоянии. Регулятор нулевого давления оснащен компенсационной мембраной для высокой точности регулирования при различном начальном давлении и нулевом балансе.

- Линейный исполнительный элемент

Линейный исполнительный элемент работает по принципу поворотной заслонки для линейного потока и настраивает газовоздушную смесь для лямбда-регулирования.

- Эластичный шлангопровод из нержавеющей стали

Эластичный шлангопровод из нержавеющей стали находится в модуле БТЭС.

- Газовоздушный смеситель с дроссельной заслонкой

Особенности

Давление потока газа в точке передачи "БТЭС газовая рампа" должно составлять 20-50 мбар.

2.1.8 Система зажигания

Система зажигания обеспечивает процесс пуска газового ДВС.

Зажигание через датчик распределительного вала осуществляется только во время такта впуска. Смещение зажигания в отдельных цилиндрах реализуется посредством соответствующих отверстий на приводной шестерне распределительного вала.

Компоненты

Система зажигания выполнена в виде бесконтактной электронной системы зажигания от разряда конденсатора на базе распределительного вала.

Она состоит из катушек зажигания (по одной на цилиндр), электронного распределителя зажигания, датчика числа оборотов для распределительного вала, силиконового кабеля зажигания, наконечника свечи и высокомощных промышленных свечей зажигания для стационарных газовых двигателей.

Особенности

Система зажигания предлагает возможности настройки момента зажигания во время работы и входы и выходы для внешнего регулирования опережения зажигания. Также можно отключить предохранительные устройства.

2.2 Муфта

Муфта (фланцевая муфта) соединяет газовый ДВС с синхронным генератором переменного тока.

Компоненты

Фланцевая муфта выполнена из силиконовой резины, высокоэластична и устанавливается в осевом направлении. Она обеспечивает упругокрутильное соединение между газовым ДВС и синхронным генератором переменного тока. Подвергнутый действию тангенциальных усилий, дискообразный резиновый элемент демпфирует вращательные движения и позволяет компенсировать несоосность.

Резиновый дискообразный элемент привулканизирован непосредственно на внутреннюю сторону ступицы. С фланцем муфты по периметру элемента имеется зубчатое зацепление на кулачках, благодаря этому во время эксплуатации создается практически беззазорное вставное соединение с геометрическим замыканием.

2.3 Синхронный генератор переменного тока

Синхронный генератор переменного тока генерирует электрический ток посредством своего вращательного движения.

Синхронный генератор переменного тока приводится в действие посредством муфты от газового ДВС. С газовым двигателем он имеет жесткое фланцевое соединение через промежуточный корпус.

Компоненты

Синхронный генератор переменного тока оснащен автоматической системой регулировки \cos - ϕ для работы между \cos ϕ =0,8 (индуктивная нагрузка) –1,0, регулируемым статическим устройством, электронной системой регулировки напряжения с защитой от скорости вращения ниже номинальной и дополнительным возбудителем на постоянных магнитах.

Стандартная на 2/3 хордовая обмотка статора позволяет работать в параллельном режиме работы с сетью с малым содержанием высших гармоник. Встроена демпферная обмотка для параллельного режима работы с другими генераторами. Встроена система контроля температуры обмотки.

Особенности

Саморегулирующийся бесщеточный синхронный генератор переменного тока с внутренними полюсами отвечает соответствующим предписаниям VDE 0530 и DIN 6280 часть 3 и стандарту качества ISO 9002.

2.4 Опорная рама

На опорной раме крепится модуль БТЭС (газовый ДВС, синхронный генератор переменного тока, теплообменник ОГ, система подачи смазки и опциональные элементы звукоизоляции). При установке опционально можно демонтировать шкаф управления БТЭС и гидравлическую систему, в которую входит насос для охлаждающей жидкости и пластинчатый теплообменник для сетевой воды. В верхней области и по бокам нижней области опору можно снимать, чтобы при выполнении проверки беспрепятственно приподнимать крупные конструктивные элементы с помощью грузоподъемных устройств, потолочного крана и т.п.

Компоненты

Опорная рама имеет крутильно-жесткую пустотелую конструкцию из прочной стандартной стали. Гидравлические переходные устройства для газа, отработанного газа, конденсата, сетевой воды и вентиляции модуля поставляются в готовом к подключению виде для линий заказчика на так называемой "стороне подключения". К остальным трем сторонам имеется свободный доступ для обслуживающего персонала и проведения техобслуживания. На опорной раме установлены резиновые элементы, которые демпфируют вибрации блока "двигательгенератор". Опорная рама установлена на прокладках из материала "Sylomer" на полу без жесткого анкерного крепления.

2.5 Трубопроводы

Трубопроводы монтируются предварительно на заводе-изготовителе и соединяют важнейшие элементы агрегата БТЭС (теплообменник охлаждающей жидкости, теплообменник ОГ и двигатель). Элементы полностью соединены трубопроводами для охлаждающей жидкости, сетевой воды и отработанных газов и оснащены необходимой изоляцией.

Компоненты

Все соединения труб для поглощения колебаний имеют металлические компенсаторы и гибкие шланговые соединения и выполнены в виде фланцевых или резьбовых соединений с плоским уплотнением. Водопроводы выполнены из стандартной стали, трубопроводы для отработанного газа - из нержавеющей стали.

2.6 Система теплообменников

В систему теплообменников входят теплообменник ОГ на каждый ряд цилиндров и теплообменник охлаждающей жидкости. Эти теплообменники используют посредством теплообмена тепло, выделяющееся при работе двигателя и содержащееся в отработанных газах.

Особенности

Теплообменники сконструированы в соответствии с директивой для напорных устройств 97/23/EWG и имеют вместе с трубопроводами необходимую изоляцию.

2.6.1 Теплообменник ОГ

Теплообменник ОГ передает тепло, выделяющееся с отработанными газами при работе газового ДВС, в водяной контур.

Выпускную камеру можно демонтировать, благодаря этому можно легко, экологично и экономично выполнять механическую чистку.

Компоненты

Теплообменник ОГ имеет приварные трубные решетки из нержавеющей стали 1.4571 и секцию прямых труб (возможность оптимальной очистки).

Впускная камера изготовлена из нержавеющей стали 1.4828 и выпускная камера - из нержавеющей стали 1.4571. Наружная обшивка выполнена из стандартной стали и имеет по бокам подключения для воды с фланцевыми соединениями согл. DIN.

Особенности

Теплообменник ОГ встроен при этом в контур охлаждения двигателя ("внутренний контур охлаждения"). Таким образом, он защищен от термического напряжения, возникающего в результате плохого качества сетевой воды.

2.6.2 Теплообменник охлаждающей жидкости (пластинчатый теплообменник)

Паянный пластинчатый теплообменник передает выделяющееся тепло от газового ДВС и отработанных газов в водяной контур.

Компоненты

Пластинчатый теплообменник состоит из пакета пластин, спаянных методом вакуумной пайки с содержанием меди 99,99 %.

Каждая вторая пластина повернута в плоскости на 180°, благодаря чему образуются две отделенные друг от друга проточные части, в которых среды (охлаждающая жидкость двигателя, сетевая вода) циркулируют противотоком. Благодаря форме пластин создается высокотурбулентный поток, позволяющий очень эффективно передавать тепло даже при незначительном объемном расходе.

Особенности

Теплообменник имеет бескаркасное исполнение для монтажа трубопроводов, пластины выполнены из нержавеющей стали, материал 1.4404 (AISI316).

2.7 Система очистки отработанных газов

После очистки отработанный газ подается в расположенный в раме теплообменник ОГ.

Регулируемый трехкомпонентный катализатор (снижение NO_x и окисление CO и C_nH_m) снижает выбросы вредных веществ, содержащихся в отработанном газе.

Компоненты

Каталитически активное покрытие нанесено на теплостойкую сталь. Монолитная металлическая подложка состоит из ферритной нержавеющей листовой стали, толщина стенок составляет 0,04 мм. Корпус выполнен из нержавеющей стали с высокой степенью термостойкости. Выпускной фланец для ОГ расположен на стороне подсоединения модуля БТЭС.

Особенности

Катализатор встроен в линию ОГ после двигателя и удобен в обслуживании, лямбда-зонд при лямбда = 1 встроен в систему ОГ модуля БТЭС непосредственно после выхода двигателя.

В новом устройстве значения NO_x < 125 мг/м³ и CO < 150 мг/м³ (соответствует 1/2 TA-Luft) заметно ниже.

В целях предотвращения преждевременного старения рабочая температура катализатора ограничена значениями ниже 700 °C.

2.8 Система подачи смазочного маспа

Каждый модуль БТЭС оснащен устройством для контроля уровня смазочного масла. При помощи смотрового окна виден уровень масла и его можно контролировать. Посредством электродатчика уровня с контактом для сигнала тревоги можно контролировать минимальное и максимальное значение. Расход масла покрывается из резервного бака для смазочного масла, объем которого ≥ одного интервала техобслуживания.

Старое масло можно сливать из модуля БТЭС самотеком. Оно собирается в резервуар для старого масла и утилизируется. Заполнение свежим маслом происходит, как правило, 20-литровыми канистрами.

Компоненты

Система подачи смазочного масла состоит из устройства для контроля уровня смазочного масла, смотрового окна, электродатчика уровня с контактом сигнала тревоги (масло-мин., масло-макс.) и переключателя дополнительного заполнения с управлением клапанами,

резервного бака для смазочного масла, бака для свежего масла (с расположенным снаружи индикатором расхода), наливного патрубка, каплеулавливающего и приемного поддонов (под модулем БТЭС).

Особенности

В целях безопасности каплеулавливающий и приемный поддоны могут вместить весь объем масляного поддона двигателя, бака со свежим маслом и контура для охлаждения двигателя и отвечают, таким образом, требованиям Закона о регулировании водного режима (WHG).

Чтобы снизить расход масла до минимума и обеспечить по возможности продолжительный срок службы масла, необходимо использовать синтетическое масло. Предложенный тип двигателя подходит для эксплуатации с полностью синтетическим смазочным маслом.

2.9 ОПЦИЯ: шумопоглощающий кожух и вытяжной вентилятор

Обшивка модуля БТЭС состоит из шумопоглощающих элементов для блока двигатель/генератор и обшивки блока теплообменника. Вытяжной вентилятор обеспечивает вентиляцию в модуле БТЭС.

Компоненты

Шумопоглощающие элементы выполнены из листовой стали, обшиты комбинированными элементами из композиционного пенного наполнителя (200 кг/м³) и мягкого пеноматериала с высокими абсорбирующими свойствами и дополнительным поверхностным покрытием. Покрытие толщиной 25 мкм устойчиво к брызгам бензина и моторного масла и легко чистится. Защитное покрытие защищает от механических повреждений, обладает превосходной стойкостью к старению. Огнестойкость согл. FMVSS 302 либо DIN 75200.

Всасывание свежего воздуха осуществляется сбоку через вентиляционные решетки в обшивке шумопоглощающего кожуха.

Шумопоглощение кожуха на средних частотах составляет прибл. 20 дБ. Соединительный парусиновый патрубок входит в комплект поставки.

Особенности

Для проведения проверок можно демонтировать несущую конструкцию для беспрепятственного использования подходящих грузоподъемных устройств.

Обшивка модуля БТЭС легко снимается для проведения монтажных работ.

Вытяжной вентилятор с напором макс. 500 Па для стабильных условий эксплуатации при повышенной температуре приточного воздуха прибл. до 35 $^{\circ}$ C.

2.10 Принадлежности базовой комплектации

2.10.1 Набор эластичных соединений

Эластичные соединения предназначены для оптимального подавления корпусного шума в местах соединений трубопроводов с модулем БТЭС.

Компоненты

- 1 осевой компенсатор для ОГ условный проход DN 150, фланец PN 10, конструктивная длина 240 мм, с допуском DVGW
- 2 гофрированных шлангопровода круглого сечения для системы отопления - условный проход DN 65. фланец PN 10. номинальная длина NL 1000, со свободным фланцем PN 10, из стали
- 1 осевой газовый компенсатор условный проход 2", PN 6, сильфон из нержавеющей стали 1.4571, многослойный, с резьбовыми соединениями из ковкого чугуна, оцинкованный, конструктивная длина 259 мм (в ненатянутом состоянии), с допуском DVGW
- Парусиновый патрубок для отходящего воздуха (уже установлен на блоке вытяжного вентилятора), плоский фланец 550 х 550 мм

Поставка

Поставка отдельно для монтажа на месте

2.10.2 Электрический счетчик кВтч

Каждый модуль БТЭС оснащен откалиброванным электрическим счетчиком кВтч, включая преобразователь.

Поставка

Установка в шкафу управления модуля

УКАЗАНИЕ!

Поверочное клеймо, проставляемое у изготовителя официально признанным органом контроля. Срок действия поверки - 8 лет. Согласно немецким правилам поверки отдельное заключение или сертификат не требуется, однако владелец измерительного прибора обязан соблюдать правовые предписания!

ВНИМАНИЕ!

Набор для увеличения температуры охлаждающей жидкости в обратной линии не содержит насос сетевой воды!

2.11 Контрольные устройства

Контроль с помощью датчика для давления масла, температуры охлаждающей жидкости, температуры отработанного газа, температуры сетевой воды и числа оборотов, а также датчика

для мин. давления охлаждающей жидкости, мин. уровня смазочного масла и предохранительного ограничителя температуры, включая кабели для шкафа управления.

Модуль БТЭС (объем поставки)

Работы, обеспечиваемые заказчиком

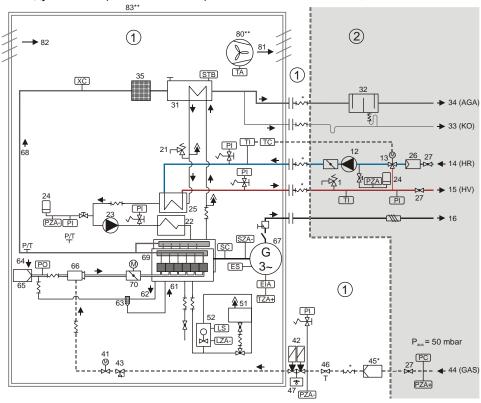


Рис. 2 Контрольные устройства

Общая легенда

1) Модуль БТЭС (входит в объем поставки) 2) аботы, выполняемые заказчиком

- 10 Защита от дефлаграции (биогаз)
- 11 Предохранительный клапан (сетевая вода)
- 12 Насос для сетевой воды
- 13 Устройство регулирования температуры в обратной линии 14 Обратная линия сетевой воды (HR)
- 15 Линия подачи сетевой воды (HV) 16 Силовое электроснабжение 400 В, 50 Гц
- 17 Линия подачи охлаждающей жидкости для охлаждения наддувочного воздуха
- 18 Обратная линия охлаждающей жидкости для охлаждения наддувочного воздуха 19 Водяной насос для охлаждения наддувочного
- воздуха 21 Предохранительный клапан (охлаждающая жидкость двигателя) 22 Масляный радиатор
- 23 Насос для охлаждающей жидкости
- 24 Мембранный расширительный бак
- **25** Теплообменник охлаждающей жидкости
- 26 Грязеуловитель
- 27 Запорный клапан
- **31** Теплообменник ОГ
- 32 Шумоглушитель 33 Выход конденсата (КО) 34 Выход ОГ (AGA)

- 35 Катализатор 41 Лямбда-регулирующий клапан
- 42 Магнитный клапан 43 Регулятор нулевого давления

- **44** Подключение газа (GAS)
- 45 Газовый фильтр, поставка отдельно **46** Газовый шаровой кран с термическим
- предохранительным клапаном
- 47 Контроль герметичности
- 51 Дополнительный бак для смазочного масла (свежее масло) 52 Автоматическая система долива с индикацией
- уровня смазочного масла 61 Обратная линия смазочного масла (от маслоотделителя) **62** Вентиляция картера
- 63 Маслоотделитель 64 Воздух для горения
- **65** Воздушный фильтр **66** Газовоздушный смеситель
- **67** Генератор
- **68** Коллектор ОГ
- 69 Двигатель
- 70 Регулятор числа оборотов и дроссельная заслонка
- 71 Турбонагнетатель
- 72 Охладитель наддувочного воздуха (интеркулер) (1-й этап)
- 73 Охладитель наддувочного воздуха (интеркулер) (2-й этап) 74 Выпускной клапан, контур низкой температурь.
- 80 Вытяжной вентилятор
- 81 Отводимый воздух 82 Подаваемый воздух
- 83 Шумопоглощающий кожух

Точки измерения:

- Контроль индикации генератора ES Управление мошностью
- . генератора
- Управление уровнем заполнения 1 7A Контроль минимального уровня
- заполнения
- PC Регулировка давления
- Индикация давления Визуальная индикация давления
- PZA-Отключение при минимальном
- давлении
- PZA+ Отключение при максимальном
- Регулятор числа оборотов
- SDB Предохранительный ограничитель давления
- STB Предохранительный ограничитель
- температуры SZA-Число оборотов ниже номинального
- Температура Температура
 Температура отводимого воздуха
 перед вентилятором TΑ
- Регупирование температуры TC:
- Индикация температуры
- Контроль температуры обмотки TZA+
- хс Лямбда-зонд
- Поставка отдельно для монтажа на месте
- Опциональная комплектация

УКАЗАНИЕ!

Для безопасного оборудования подключения отопительного контура использовать только прошедшие типовые испытания детали!

2.12 Шкаф управления

Шкаф управления закреплен на модуле БТЭС. Все следующие компоненты, включая кабели, находятся внутри модуля БТЭС.

2.12.1 Краткое описание

Силовая часть генератора

Силовой выключатель четырехполюсный, с термомагнитным размыкателем, с ручным приводом

Контактор генератора

Комплект преобразователя тока

Откалиброванный электрический счетчик кВтч, вкл. преобразователь

Блок управления, контроля и вспомогательного привода

Синхронизация и контроль сети

Системы управления и реле для насоса охлаждающей жидкости, стартера, вытяжного вентилятора, газовой рампы

Регулировка мощности для прогрева, постоянного и переменного значения с функцией рампы при пуске и останове, регулировка числа оборотов и мощности с помощью электронного регулятора числа оборотов с электрическим исполнительным элементом, воздействующим на газовоздушную дроссельную заслонку

Розетка 230 В для проведения техобслуживания

Переключатель с ключом для аварийного отключения (аварийный останов)

Зарядное устройство АКБ

Микропроцессорное управление

Дисплей для индикации рабочих показателей и неполадок в виде появляющихся окон

2 отдельных микропроцессора, соответственно для пуска и останова в параллельном режиме работы с сетью и режиме резервного источника электропитания, включая лямбда-регулировку и защиту/контроль сети

Отдельные защищенные паролем уровни доступа для энергоснабжающих предприятий, параметрирования и ручного управления

Беспотенциальные входы для дистанционного пуска, регулировки постоянных и переменных значений и запуска в качестве резервного источника

Память событий для регистрации мин-макс. аналоговых значений с целью оптимизации работы

Память ошибок для регистрации всей цепи ошибок с рабочими параметрами без возможности удаления для целенаправленного анализа неисправностей

Интерфейс DDC через RS 232 с протоколом 3964R (RK 512 подбирается заказчиком в соответствии с аппаратным и программным обеспечением на месте установки) – другие интерфейсы по запросу

Сообщения о системных и общих неисправностях через беспотенциальные контакты

Опция: дистанционный контроль данных

Таб. 3 Компоненты шкафа управления

VITORI OC 200 FM-238/363

2.12.2 Принципиальная электрическая схема для параллельного режима работы с сетью и режим резервного источника электропитания

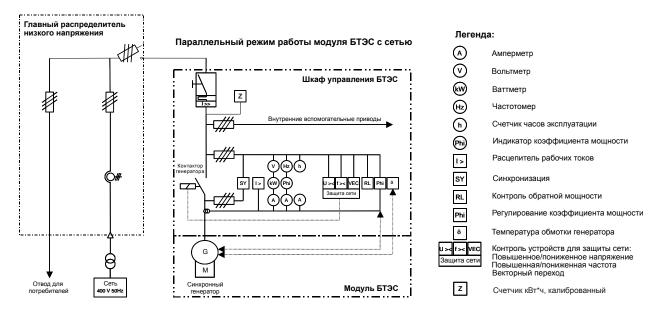


Рис. 3 Принципиальная электрическая схема для параллельного режима работы с сетью

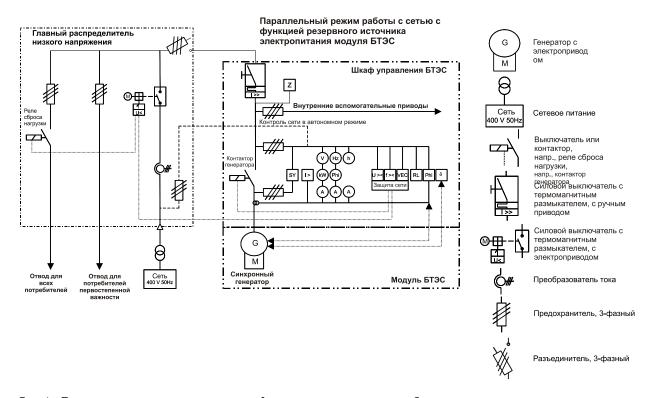


Рис. 4 Принципиальная электрическая схема для параллельного режима работы с сетью и режима резервного источника электропитания

5719 928-1 03/2012

Описание продукта

2.13 Контрольный перечень для работы в режиме резервного источника электропитания

При проектировании установок БТЭС для работы в режиме резервного источника электропитания необходимо выяснить следующие пункты и согласовать их с изготовителем БТЭС:

- Каков режим эксплуатации установки для работы в режиме резервного источника электропитания?
 Необходимо предоставить, по меньшей мере, одну однолинейную схему для разъяснения.
 Необходимо указать и отметить в плане управляемые БТЭС выключатели.
- Для каких нагрузок должно быть обеспечено электроснабжение?
 Необходимо предоставить список самых мощных потребителей с указанием значений мощности и тока. Затем изготовитель БТЭС определит допустимое подключение нагрузки. При необходимости после согласования заказчик должен предусмотреть возможность сброса нагрузки.
- Меры защиты: Должны быть проверены выбранные предохранительные устройства со стороны заказчика.
- Допустимая температура в обратной линии сетевой воды в установках БТЭС для работы в режиме резервного источника электропитания составляет макс. 65°С в параллельном режиме работы с сетью и режиме резервного источника электропитания. Поэтому эти установки БТЭС не предназначены для снабжения абсорбционных холодильных установок.
- Главный газовый электромагнитный клапан, сетевой секционный выключатель и соответствующий расцепитель рабочих токов должны иметь питание с буферной батареей. Питающее напряжение 230 В для главного газового магнитного клапана или сетевого секционного выключателя не допускается!
 Главный газовый электромагнитный клапан и привод сетевого секционного выключателя от БТЭС не запитываются!
- Настройка и ответные сигналы выключателей выполняются с электриком заказчика или поставщиком БТЭС.
- Если у заказчика вышестоящая система регулировки не может обеспечить автоматическое бесперебойное включение установки в случае возникновения неполадок в сети, то при сбое в сети сообщения об ошибках из отопительных или вентиляционных систем заказчика могут привести к отключению БТЭС, например, в результате недостаточного отвода тепла. В этом случае вышестоящую систему регулировки следует оснастить источником бесперебойного питания (ИБП).

- Непосредственно после ввода БТЭС в эксплуатацию необходимо проверить также работу в режиме резервного источника электропитания со всеми участниками. При невозможности таковой проверки необходимо назначение новой даты проверки, оплата за которую будет рассчитываться в соответствии с объемом работ.
- Электропитание спринклерного насоса регламентируется более строгими предписаниями VdS и не может гарантироваться в случае БТЭС в обычной комплектации.
- При применении нескольких модулей БТЭС в режиме резервного источника электропитания необходимо предусмотреть соответствующие системы управления (напр., Multi-Modul-Management MMM) с распределением активной нагрузки.
- Подключение БТЭС к имеющемуся дизельному агрегату аварийного питания не рекомендуется ввиду различия регулировочной характеристики газовых и дизельных двигателей! Основным условием является техническая оснащенность дизельного агрегата аварийного питания для параллельной работы с другими генераторными агрегатами (например, регулируемое напряжение генератора, цифровые входы для распределения активной нагрузки в системе управления дизельного агрегата).

Техобслуживание и восстановительный ремонт

3 Техобслуживание и восстановительный ремонт

Для модуля БТЭС необходимо учитывать связанные с его эксплуатацией расходы на проведение проверок, техобслуживания и восстановительного ремонта.

В ходе использования по назначению модуль БТЭС подвергается различным воздействиям: износу, старению, коррозии, тепловым и механическим нагрузкам. Это считается износом согл. DIN 31051. В зависимости от конструкции детали модуля БТЭС имеют запас износостойкости, обеспечивающий надежную эксплуатацию установки БТЭС в соответствии с эксплуатационными условиями до момента ухудшения работоспособности. Затем данные детали необходимо заменить, разделяя при этом изнашивающиеся детали и детали с ограниченным сроком эксплуатации.

Определения по DIN 31051 – "Изнашивающаяся деталь"

Изнашивающиеся детали - это детали, которые неизбежно изнашиваются в ходе эксплуатации и замена которых предусмотрена конструкцией. К ним относятся, в основном, свечи зажигания, воздушные и масляные фильтры и т.п. Их замена производится периодически в так называемые интервалы "Проверки и техобслуживания" ("Периодическое техобслуживание").

ВНИМАНИЕ!

Техобслуживание следует проводить минимум один раз в год, охлаждающую жидкость необходимо заменять не реже одного раза в 2 года.

УКАЗАНИЕ!

Расчетный срок эксплуатации модуля БТЭС составляет не менее 10 лет при условии регулярного техобслуживания и восстановительного ремонта.

Определения по DIN 31051 – "Деталь с ограниченным сроком эксплуатации"

Детали с ограниченным сроком эксплуатации - это детали, срок службы которых короче по отношению к сроку службы всего модуля БТЭС и не может быть продлен с помощью технически возможных и экономически оправданных средств. К ним относятся, в основном, головки цилиндров, вкладыши подшипников, катализатор, теплообменник и т.д. Их замена осуществляется по результатам проверок с большими временными интервалами. В этом случае речь идет о восстановительном ремонте.

Надлежащее техобслуживание модуля БТЭС авторизованным персоналом играет важную роль для безупречной работы и предоставления гарантии. Разрешается использовать только оригинальные запчасти и одобренные изготовителем БТЭС эксплуатационные материалы (смазочное масло). Эксплуатирующая сторона несет ответственность за обеспечение и соблюдение предписаний по эксплуатационным материалам.

5719 928-1 03/2012

Техобслуживание и восстановительный ремонт

3.1 Список работ по техобслуживанию и восстановительному ремонту

А/В/С Замена масля А/В/С Замена масляного фильтра А/В/С Очистка бака для смазочного масла в ЕМ-18/36 (только для 2002 года выпуска) А/В/С Проверка системы разбрызгивания масла в ЕМ-18/36 (только для 2002 года выпуска) А/В/С Проверка состояния АКБ и напряжения зарядки / при необходимости долить дистил. вод А/В/С Замена вкладыша воздушного фильтра, очистка корпуса воздушного фильтра А/В/С Измерение зазора клапана, при необходимости отрегулировать А/В/С Проверка давления охлаждающей жидкости, при необходимости долить и возм. удалить воздиной проверка выходного штуцера конденсата, при необходимости очистить / проверка нейтрализатора А/В/С Проверка дроссельной заслонки и тяги/проверка зубчатого ремня, при необходимости смазат	цух
А/В/С Проверка системы разбрызгивания масла в ЕМ-18/36 (только для 2002 года выпуска) А/В/С Проверка системы разбрызгивания масла в ЕМ-18/36 (только для 2002 года выпуска) А/В/С Проверка состояния АКБ и напряжения зарядки / при необходимости долить дистил. вод А/В/С Замена вкладыша воздушного фильтра, очистка корпуса воздушного фильтра А/В/С Измерение зазора клапана, при необходимости отрегулировать А/В/С Проверка давления охлаждающей жидкости, при необходимости долить и возм. удалить воз, Проверка выходного штуцера конденсата, при необходимости очистить / проверка нейтрализатора Проверка дроссельной заслонки и тяги/проверка зубчатого ремня, при необходимости смазат	цух
А/В/С Проверка системы разбрызгивания масла в ЕМ-18/36 (только для 2002 года выпуска) А/В/С Проверка состояния АКБ и напряжения зарядки / при необходимости долить дистил. вод А/В/С Замена вкладыша воздушного фильтра, очистка корпуса воздушного фильтра А/В/С Измерение зазора клапана, при необходимости отрегулировать А/В/С Проверка давления охлаждающей жидкости, при необходимости долить и возм. удалить воз, Проверка выходного штуцера конденсата, при необходимости очистить / проверка нейтрализатора Проверка дроссельной заслонки и тяги/проверка зубчатого ремня, при необходимости смаза:	цух
A/B/C Проверка состояния АКБ и напряжения зарядки / при необходимости долить дистил. вод A/B/C Замена вкладыша воздушного фильтра, очистка корпуса воздушного фильтра A/B/C Измерение зазора клапана, при необходимости отрегулировать A/B/C Проверка давления охлаждающей жидкости, при необходимости долить и возм. удалить воз, A/B/C Проверка выходного штуцера конденсата, при необходимости очистить / проверка нейтрализатора A/B/C Проверка дроссельной заслонки и тяги/проверка зубчатого ремня, при необходимости смаза:	цух
А/В/С Замена вкладыша воздушного фильтра, очистка корпуса воздушного фильтра А/В/С Измерение зазора клапана, при необходимости отрегулировать Проверка давления охлаждающей жидкости, при необходимости долить и возм. удалить воз, Проверка выходного штуцера конденсата, при необходимости очистить / проверка нейтрализатора Проверка дроссельной заслонки и тяги/проверка зубчатого ремня, при необходимости смазат	цух
А/В/С Измерение зазора клапана, при необходимости отрегулировать Проверка давления охлаждающей жидкости, при необходимости долить и возм. удалить возд Проверка выходного штуцера конденсата, при необходимости очистить / проверка нейтрализатора Проверка дроссельной заслонки и тяги/проверка зубчатого ремня, при необходимости смазат	-
А/B/С Проверка давления охлаждающей жидкости, при необходимости долить и возм. удалить воз, Проверка выходного штуцера конденсата, при необходимости очистить / проверка нейтрализатора А/B/С Проверка дроссельной заслонки и тяги/проверка зубчатого ремня, при необходимости смазат	-
А/B/С Проверка выходного штуцера конденсата, при необходимости очистить / проверка нейтрализатора А/B/С Проверка дроссельной заслонки и тяги/проверка зубчатого ремня, при необходимости смазат	-
нейтрализатора А/B/C Проверка дроссельной заслонки и тяги/проверка зубчатого ремня, при необходимости смаза:	Ъ
	ъ
A ID 10	
А/В/С Проверка провода зажигания, штекера свечи зажигания	
A/B/C Проверка свечей зажигания, расстояния между электродами, при необходимости отрегулировать.	
А/В/С Проверка момента зажигания	
А/В/С Проверка процесса пуска - останова / работы	
A/B/C Регистрация или печать общих рабочих характеристик	
А/В/С Проверка противодавления ОГ после двигателя	
А/В/С Общий контроль герметичности / выборочная проверка посадки винтов.	
А/В/С Контроль работы автоматической системы доливки масла / проверить настройку уровня	
A/B/C Открыть кран для доливки масла / отметить уровень масла	
А/В/С Сброс интервала техобслуживания	
А/В/С Общая очистка модуля / утилизация чистящих средств, канистр для масла и т.д.	
A/B/C Общий визуальный контроль компонентов шкафа управления	
B/C Проверка зубчатого ремня для распределительного вала, натяжного ролика и водяного насоса (только EM-18/36)	
В/С Проверка уровня антифризного средства, при необходимости долить	
В/С Проверка давления сжатия (у ЕМ-18/36 на каждом этапе техобслуживания)	
B/C Проверка всасывания воздуха на генераторе, при необходимости очистить / проверить силовой кабель	
В/C Замена свечей зажигания (у ЕМ-18/36, ЕМ-199/263 и ЕМ-199/293 заменить на этапе техобслуживания A)	
В/С Проверка функции контроля "Обратная мощность"	
В/С Проверка газовой рампы на герметичность и газового фильтра	
В/С Проверка функции отключения "Превышение числа оборотов"	
В/С Проверка функции отключения "Превышение температуры ОГ"	
В/С Проверка функции отключения "Превышение температуры охлаждающей жидкости"	
В/С Проверка функции отключения "Мин. давление масла"	
В/С Проверка силового кабеля на генераторе	
С Замена кабеля зажигания	
С Проверка лямбда-зонда, при необходимости заменить	
С Очистка газового смесителя	
С Замена охлаждающей жидкости (в течение 24 месяцев), проверка напорного расширительного бака	
С Проверка вентиляции картера, при необходимости произвести ремонт	

Таб. 4 Список работ по техобслуживанию

Техобслуживание и восстановительный ремонт

Этап текущего ремонта	Работы по текущему ремонту:
i1/i2/i3/i4	Очистка теплообменника ОГ
і2 Замена головок цилиндра	
i2/i4	Проверка пластинчатого теплообменника, при необходимости замена
i2/i4	Стартер
i2/i4	Проверка катализатора, при необходимости замена
i2/i4	Замена катушек зажигания
i4	Текущий ремонт двигателя
i4	Текущий ремонт подшипника генератора

Таб. 5 Список работ по текущему ремонту

Все нижеприведенные проектные и рабочие характеристики указаны для одного модуля БТЭС.

Подробные указания по проектированию и исполнению вы найдете в документации "Ряд БТЭС на природном газе – проектный менеджмент".

4.1 Рабочие параметры модуля БТЭС в комплекте

Рабочие параметры модуля БТЭС			Vitoblo	c 200 EM-	238/363
Продолжительная эксплуатация при нормальных у режиме работы с сетью	условиях ¹⁾ в паралле	льном	50% нагрузки	75% нагрузки	100% нагрузки
Электрическая мощность без перег	рузок	кВт	119	179	238
Тепловая мощность Допуск 7	%	кВт	220	298	363
Потребляемая мощность Допуск 5	%	кВт	396	536	667
Показатель тока согл. AGFW FW308 (электрическая мо	ощность / тепловая мо	щность)			0,66
Коэффициент использования первичной энергии ENE				0,73	
Экономия первичной энергии РЕЕ согл. директиве 200 когенерации	%			25,5	
КПД в параллельном режиме работы с сетью					
Электрический КПД		%	30,1	33,4	35,7
Тепловой КПД		%	55,6	55,6	54,4
Общий КПД		%	85,6	89,0	90,1
Производство электроэнергии					
Электроэнергия (переменный ток)	Напряжение	В		400	
	Частота	Гц		50	
Собственный расход электроэнергии ²⁾		кВт		6,1	
Тепловая энергия (тепло для отопления) без функции режима резервного источника электропитания	Температура подающей/обратной линии	°C		90/70	
Тепловая энергия (тепло для отопления) с функцией режима резервного источника электропитания	Температура подающей/обратной линии	°C		90/65	
Эксплуатационные материалы и заправочные объ	емы				
Характеристики топлива, смазочного масла, охлаждак сетевой воды	ощей жидкости,		•	льные пре эксплуатац	
Заправочный объем Смазочное масло		Л		30	
Дополнительный бак	для свежего масла	Л		200	
Охлаждающая жидко	ОСТЬ	Л		120	
Сетевая вода		Л		40	
Давление подключения (газ) ³⁾		мбар		20 - 50	
Выработка тепла (обогрев)					
Температура обратной линии перед модулем	мин./макс.	°C		60/70	
Стандартная разность температур	Возврат/подача	К		20	
Объемный расход сетевой воды	Стандарт	М3/Ч		15,6	
Максимально допустимое рабочее давление		бар		10	
Потеря давления при стандартном расходе в модуле	Стандарт	бар		0,4	
Выбросы вредных веществ ⁴⁾ согл. стандарту ТА-Lu	uft 2002				
Содержание NOx	измерено как NO ₂	мг/Нм³		< 125	
Содержание СО		мг/Нм³ мг/кВтч		< 150 < 181	
Формальдегид CH₂O		мг/Нм³		< 60	

Уровень звукового давления в свобод (допуск для указанных значений 3 дБ(DIN 456	35		
Отработанный газ ⁵⁾	с 1 опциональным шумоглушителем	дБ (А)	67		
Воздух для горения и вентиляция					
Радиационное тепло модуля	без соединительной линии	кВт	3	35	
Вентиляция помещения для монтажа	Объемный расход отработанного газа		Этап 1	Этап 2 (>40 °C)	
	При напоре 500 Па	м³/ч	3.900	7.800	
	При напоре 400 Па	м³/ч	4.790	9.580	
	При напоре 300 Па	м³/ч	5.566	11.132	
	При напоре 200 Па	М³/Ч	6.330	12.660	
	Объемный расход приточного воздуха	М ³ /Ч		ный расход здуха, вкл. 10%	
Объемный расход воздуха для горения	при 25 °C и 1000 мбар	М3/Ч	750		
Температура приточного воздуха	мин./макс.	°C	10/25		
Разность температур	Приточный/отходящий воздух	К	< 20		
Напор интегрированного вытяжного вентилятора	макс.	Па	500		
Отработанный газ		•	•		
Объемный расход отработанного газа, влажного	при 120 °C	М ³ /Ч	9	61	
Массовый расход отработанного газа, влажного		кг/ч	8	36	
Объемный расход отработанного газа, су	хого 0 % O ₂ (0 °C; 1012 мбар)	Нм³/ч	668		
Макс. допустимое противодавление	после модуля	мбар	1	5	

¹⁾ Данные по мощности согл. DIN ISO 3046 часть 1 дапные но мощенский соет. В 180 очен часты т (при давлении воздуха 1000 мбар, температуре воздуха 25 °C, относительной влажности воздуха 30 % и соs φ =1) Все остальные характеристики модуля действительны для параллельного режима работы с сетью; характеристики для других условий монтажа по запросу

Таб. 6 Рабочие параметры модуля БТЭС в комплекте

Насос для охлаждающей жидкости, вентилятор, зарядное устройство АКБ, регулировочный трансформатор Давление подключения (газ) - это давление газового потока в начале газовой рампы модуля в соответствии с DVGW-TRGI 1986/96

Эмиссионные показатели после катализатора для сухого отработанного газа; для работы соответ. ½ значений

стандарта TA-Luft необходимо учитывать более короткие интервалы техобслуживания и замены катализатора. При использовании БТЭС для жилых помещений настоятельно рекомендуется предусмотреть 2 расположенных друг за другом глушителя звука отработанных газов, чтобы соответствующим образом защитить помещения, которые особо требуют этого.

4.2 Технические характеристики модуля БТЭС в комплекте

Технические характеристики модуля Б	ГЭС		Vitobloc 200 EM-238/363		
Двигатель с принадлежностями					
Газовый ДВС	Изготовитель		MAN		
	Тип двигателя		E 2842 E 312		
Принцип действия			4-тактный		
Число цилиндров/расположение			12 / V-образное		
			расположение		
Отверстие/ход		ММ	128/142		
Рабочий объем		Л	21,93		
Число оборотов		об/мин	1500		
Средняя скорость поршня		м/с	7,1		
Степень сжатия			12, 5 : 1		
Среднее эффективное давление		бар	9,12		
Стандартная мощность¹)	без перегрузок	кВт	250		
Удельный расход при полной нагрузке	Допуск 5 %	кВтч/кВтч _{мех}	2,67		
Расход газа	напр., при Hi = 10 кВтч/м³	Нм³/ч	66,7		
Количество смазочного масла в масляном поддоне		Л	22-30		
Расход смазочного масла	(среднее значение)	г/ч	ок. 100		
Вес двигателя	прибл.	КГ	1300		
Система теплообменников для охлажд	ения двигателя (блок д	двигателя и см	иазочное масло)		
Тепловая мощность	Допуск 7 %	кВт	236		
Температура охлаждающей жидкости	Вход/выход	° C	80/88		
Объемный расход охлаждающей жидкости		м³/ч	38,28		
Теплообменник ОГ		·			
Тепловая мощность	Допуск 7 %	кВт	127		
Температура отработанного газа	Вход/выход	° C	570 / < 120		
Температура охлаждающей жидкости	Вход/выход	° C	88/92		
Потеря давления	со стороны ОГ	мбар	< 10		
Материал труб			1,4571		
Материал насадки для ОГ	Вход		1,4828		
	Выход		1,4571		
Материал трубы-оболочки для воды			сталь 50		
Пластинчатый теплообменник					
Тепловая мощность		кВт	363		
Температура охлаждающей жидкости	Вход/выход	°C	92/80		
Температура сетевой воды	Вход/выход	°C	70/90		
Потеря давления		бар	0,4		
Материал пластин			1,4401		
Условный проход					
Подключение ОГ (AGA), начиная с модуля	я БТЭС, трубное соедин	ение	DN 150 / PN 10		
Подключение конденсата (КО), трубное со	рединение		Труба ø 22 x 2,0		
Сетевая вода, подача/возврат (HV/HR), тр	убное соединение		DN 65 / PN 16		
Подключение газа (GAS), трубное соедин	ение		Газовый шаровой кран Rp 2		

Генератор				
Типовая мощность	кВА		280	
Переменный ток Напряжение/	Частота: В / Гц		400/50	
Число оборотов		1500		
КПД при номинальной мощности модуля и cos φ = 1	95,4			
Номинальный ток		405		
Установившийся ток короткого замыкания	от 3-	до 5-кратного значения		
'		номинального тока		
Макс. допустимое подключение нагрузки		103		
Схема включения обмоток статора			звезда	
Температура окружающей среды макс.	°C		40	
Степень защиты			IP 23	
Постоянные времени в секундах		,		
Разомкнутая электрическая цепь, переходная постоянная Td'o	С		3,6	
Короткозамкнутая электрическая цепь, переходная постоянная Та	С		0,17	
Короткозамкнутая электрическая цепь, сверхпереходная постоянна	я Td' c		0,01	
с короткозамкнутым полем Та	С		0,016	
Кабельные соединения для клеммной коробки БТЭС				
Защита предохранителем ГРНН (рекомендация)	А		630	
Минимально необходимое исполнение для надлежащего подключ	ения установки БТЭС	(2)		
Подключение к сети для СРНН, сетевой соединительной панели или трансформатора	X1: L1,L2,L3, N PE		H07 RNF 5 x 2 x 120 мм²	
Дистанционный выбор со стороны заказчика "Тепловой режим" 100% мощность	Х1: Клемма 40 / 41			
Ответный сигнал (беспотенциальный контакт) модуль "Готов"	Х5: Клемма 1 / 2			
Ответный сигнал (беспотенциальный контакт) модуль "Работа"	Х5: Клемма 3 / 4		Ölflex 12 x 1,5 мм²	
Ответный сигнал (беспотенциальный контакт) модуль "Неполадка"	Х5: Клемма 5 / 6			
Выбор Насос сетевой воды ³⁾ (беспотенциальный контакт)	Х5: Клемма 9 / 10			
Регулировочный клапан сетевой воды (увеличение температуры в обратной линии)	Х5: Клемма 16 / 17 / 18	B/PE	Ölflex 4 x 0,75 мм²	
Насос сетевой воды 230 В /10 А ³⁾	X5: Клемма 21 / N / PE		Ölflex 3 x 1,5 мм²	
Дополнительный датчик РТ 100 в общей обратной линии сетевой воды для опционального выбора и отмены выбора модуля	Х1: Клемма 44 / 45		Ölflex 2 x 1,5 мм²	
Заземляющий кабель от модуля к шине выравнивания потенциалов, предоставляемой заказчиком	Заземляющее присоединение на рам модуля	ıe	Размеры в соотв. с условиями заказчика	
Расширенное исполнение установки для работы в "режиме резерв	зного источника элект	ропи	гания"	
Измеряемое напряжение в сети перед сетевым секционным выключателем	Х1: Клемма 7 / 8 / 9 / №	I/PE	Ölflex 5 x 1,5 мм²	
Ответный сигнал Сетевой секционный выключатель включен (сообщение от ГРНН или сетевой соединительной панели)	Х1: Клемма 12 / 13		Ölflex 5 x 1,5 мм²	
Ответный сигнал Сетевой секционный выключатель выключен (сообщение от ГРНН или сетевой соединительной панели)	Х1: Клемма 14 / 15		Olliex 5 X 1,5 MM ²	
Выбор режима резервного источника электропитания 4)	Х1: Клемма 38 / 39		Ölflex 3 x 1,5 мм²	
Команда на включение сетевого секционного выключателя "Деблокировка сетевого секционного выключателя" (беспотенциальный контакт)	i X5: Клемма 7 / 8		Ölflex 3 x 1,5 мм²	

Данные по мощности согл. DIN ISO 3046 часть 1

Таб. 7 Технические характеристики модуля БТЭС в комплекте

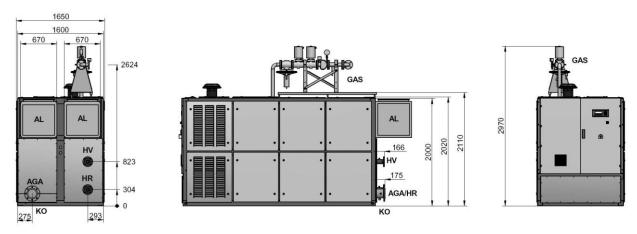
даныве по мождисита соват, из точно осточность часть т (при давлении воздуха 1000 мбар, температуре воздуха 25 °C, относительной влажности воздуха 30 % и соѕ ф =1) Все остальные характеристики модутя действительны для параплельного режима работы с сетью; характеристики для других условий монтажа по запросу В данном списке перечислены минимальные необходимые кабельные соединения для надлежащего подключения установки БТЭС, список является только директивой. Ответственность за надлежащее выполнение кабельных соединений несет компания, выполняющая электротехнические работы, эти работы должны выполняться в

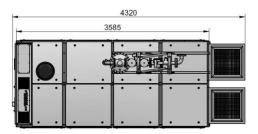
Оптветнотненностть за надлежащее выполнение кадельных соединении несет компания, выполняющая электиротехнические радоты, эти радоты одляны выполнялыся соответствии с местными условиями и специальными предписаниями Союза немецких электротехников и энергоснабжающей организации. Клеммное соединение насоса сетевой воды в исполнении 230 В может осуществляться напрямую. При наличии насоса 400 В силовой блок должен реализовываться со стороны конструкции. Однако автоматический выбор осуществляется, беспотенциально из системы управления модуля. Выбор для работы в режиме резервного источника электропитания осуществляется посредством внешней системы управления после сброса нагрузки заказчиком. Выбор можно осуществить также автоматически в модуле, но без контроля сброса нагрузки.

4.3 Габариты, вес и цвета

Размеры модуля БТЭС			Размеры	рамы вкл. шумопоглощающий кож и вытяжной вентилятор ¹⁾			
Длина (включая шкаф управления) мм				3585	5 4320		
Ширина мм			1600)		1650	
Высота			MM	2000)		2020
Вес модуля І	БТЭС						
Собственная	масса	прибл.	КГ			5300	
Рабочая масс	a	прибл.	КГ			5800	
Цвета						<u> </u>	
Двигатель, генератор				светло-серый (RAL 7035)			
Рама				серый антрацит (RAL 7016)			
Шкаф управления				серебро Вито			
Шумопоглощающий кожух ¹⁾				серебро Вито			
Соединения	i .		Исполі	нение	Ст	андарт	Размер
AGA	Выход ОГ		Флан	нец	EN	I 1092-1	DN 150 / PN 10
КО	Слив конденсата	l	Тру	ба	DIN	EN 10220	ø22 x 2,0
GAS	Вход газа		Газовый ша	ровой кран	DI	N 2999	Rp 2"
HV/HR	Линия подачи/во	зврата	Флан	нец	EN	I 1092-1	DN 65 / PN 16

Фланец


Таб. 8 Габариты, вес, цвета и подключения


ΑL

(нагрев)

воздуха

Выход отходящего

Puc. 5 Размеры и подключения модулей БТЭС Vitobloc 200 EM-238/363 (размеры в мм); уже монтированный вентиляторный блок на обратной стороне можно демонтировать для установки модуля

550 x 550 P20

¹⁾ Для модулей БТЭС Vitobloc 200 EM-238/363 шумопоглощающий кожух и вытяжной вентилятор поставляются опционально.

4.4 Монтаж

Подробные указания по исполнению вы найдете в документации "Ряд БТЭС на природном газе проектный менеджмент" и соответствующем руководстве по монтажу

При монтаже модуля БТЭС необходимо учитывать следующие пункты:

- Для управления и техобслуживания необходимо оставлять свободное пространство с размером в свету согл. монтажному плану на стр. 27 Рис. 6.
- При монтаже на месте установки следить за тем, чтобы опоры модуля имели высоту в свету минимум 9-11 см.
- Размеры указаны для труб длиной до 10 м, в противном случае необходимо произвести отдельный расчет.
- Рекомендуется проектировать газовую соединительную линию установки БТЭС с большими размерами, чтобы использовать этот участок в качестве буферного накопителя. Благодаря этому поглощаются колебания давления при переключении котпов.
- Рекомендуется использовать откалиброванный газовый счетчик в исполнении G65.
- Опциональный блок вытяжного вентилятора можно демонтировать для установки модуля БТЭС. При необходимости сообщить об этом своевременно перед поставкой.
- В системе ОГ следует избегать падения значений ниже точки росы. Возникающий конденсат должен непрерывно удаляться. На выходе конденсата необходимо предусмотреть водосборник. В многомодульных установках рекомендуется использовать отдельные линии ОГ для каждого модуля БТЭС. При использовании коллектора ОГ необходимо надежно обеспечить, чтобы 100% герметичные запорные заслонки двигателя предотвращали попадание обратного потока ОГ в неработающие модули БТЭС.

- Из модуля БТЭС при пуске в холодном состоянии вытекает конденсат. Благодаря очистке ОГ согл. ATV A251 (нояб. 1998) можно отказаться от нейтрализации. Однако, должен быть предусмотрен водосборник (сифон) с действительной высотой водяного столба в соответствии с возникающим в системе давлением ОГ (макс. 250 мм водяного столба), чтобы предотвратить недопустимый выход ОГ через линию отвода конденсата.
- Конденсат ОГ следует утилизировать в соответствии с действующими предписаниями.

4.5 Соотношение пуск/останов

При каждом пуске модуль должен работать минимум 120 минут (соотношение числа часов эксплуатации к числу пусков прибл. 2:1). Преждевременный износ пусковых устройств при более коротком времени обусловлен режимом эксплуатации и не является дефектом.

26

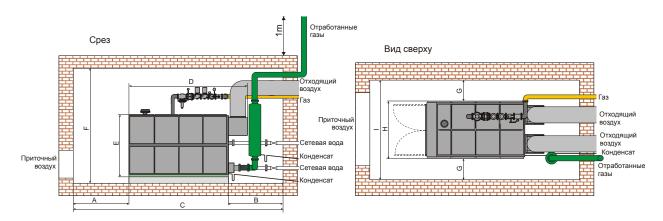


Рис. 6 Образцы монтажного плана – Изображение без арматуры и оборудования для безопасности (размеры в мм)

	Vitobloc 200							
	EM-20/39	EM-50/81 EM-70/115	EM-140/207	EM-199/263 EM-199/293	EM-238/363	EM-401/549 EM-363/498		
Α	1 000 мм	1 000 мм	1 000 мм	1 000 мм	1 000 мм	1 000 мм		
В	1 200 мм	1 400 мм	1 600 мм	2 000 мм	2 000 мм	2 000 мм		
С	4 140 мм	5 240 мм	6 040 мм	6 600 мм	6 600 мм	7 000 мм		
D	2 250 мм	3 390 мм	4 250 мм	4 320 мм	4 320 мм	4 700 мм		
Е	1 300 мм	1 800 мм	1 800 мм	2 070 мм	2 070 мм	2 070 мм		
F	2 000 мм	2 800 мм	2 800 мм	3 500 мм	3 500 мм	3 500 мм		
G	800 мм	800 мм	800 мм	1 100 мм	1 500 мм	1 500 мм		
Н	880 мм	900 мм	940 мм	1 650 мм	1 650 мм	1 650 мм		
I	2 480 мм	2 500 мм	2 540 мм	3 850 мм	4 650 мм	4 650 мм		

Таб. 9 Установочные размеры

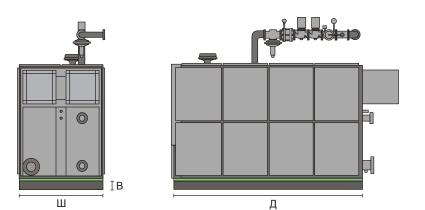


Рис. 7 БТЭС с цоколем

Мин. размер цоколя Vitobloc 200 EM-238/363

Д 3 600 мм Ш 1 600 мм В 150 мм

5 Общие указания по проектированию и эксплуатации

При соблюдении следующих пунктов повышается эксплуатационная безопасность.

Неисправности или косвенный ущерб, возникшие ввиду недопустимых условий эксплуатации, не покрываются ни гарантией, ни договором сервисного обслуживания.

Конструктивное исполнение

- Избегать тактового режима включения/выключения, при необходимости предусмотреть буферное ЗУ:
 V_{буфер} = Q_{th} x 43 (минимальный размер буфера)
- Соотношение числа часов эксплуатации и количества запусков должно быть минимум больше 2, т.е. на один запуск минимум два часа работы.

Помещение для установки

- Предусмотреть звукопоглотители для ОГ и отходящего воздуха в критичных с точки зрения шумов объектах, всегда использовать эластичные соединения (компенсаторы).
- Следить за правильностью размеров и прокладки линий отходящего воздуха и ОГ (потери давления, условный проход, аэродинамический шум).
- Установка с использованием поглощающих вибрацию элементов для устранения корпусного шума.

ОПАСНОСТЬ!

Не устанавливать в одном помещении с котельной установкой с атмосферной горелкой или холодильной машиной на NH₃.

Обогрев

- Определить постоянные величины и достаточный объемный поток сетевой воды.
- Предотвратить отключение ввиду слишком высокой температуры в обратной линии сетевой воды.
 Температура сетевой воды в обратной линии не должна превышать допустимое значение ни в режиме резервного источника электропитания, ни в параллельном режиме работы с сетью.
- При слишком низких значениях температуры сетевой воды в обратной линии (< 40°C) следует предусмотреть устройство повышения температуры в обратной линии, которое устанавливается как можно ближе к модулю БТЭС.
- Функция режима резервного источника электропитания не может использоваться в случае работы абсорбционной холодильной установки.

Отработанный газ

- Поперечное сечение линии для ОГ имеет достаточные размеры.
- Система ОГ в готовых системах должна иметь конструктивный допуск, быть герметичной и устойчивой к пульсации до 50 мбар. При таком испытательном давлении утечка не должна превышать 0,006 л/м³с (соответствует H1).
- Для конденсата необходимо предусмотреть свободный слив с уклоном мин. 3% через сифон (Uобразная труба) высотой прибл. 250 мм для предотвращения выхода ОГ из выходного штуцера конденсата
- Соблюдать руководство по монтажу для систем ОГ (ew-kl & dw-kl) для Vitobloc 200.
- При использовании БТЭС в жилой зоне в целях соответствия требованиям для помещений, нуждающихся в особой защите (ночью 25 дБ(A)),

настоятельно рекомендуется предусмотреть 2 последовательных глушителя шума ОГ.

Вентиляция

- Обеспечить подачу предварительно не нагретого, не содержащего пыль, серу и галогены воздуха для охлаждения и горения.
- Обеспечить достаточную подачу свежего воздуха и надежный отвод отходящего воздуха.
- Для хлорсодержащего воздуха (напр., в бассейнах) необходимо предусмотреть отдельную всасывающую линию для приточного воздуха.

Топливо

- Соблюдать давление потока газа от 20 мбар до 50 мбар и метановое число ≥ 80.
- Рекомендация: Для создания буфера давления прибл. за 5 м до установки БТЭС диаметр газовой соединительной линии следует увеличить в два раза.
- Опциональные счетчики расхода газа измеряют в основном рабочий объем в кубических метрах: Эти значения необходимо согласно директивам DVGW-TRGI G 600 пересчитать в нормальные кубические метры ("число z").

Электрооборудование

- БТЭС генерирует электроэнергию 400 В. В целях безопасности она оснащена чувствительными электрическими устройствами для защиты сети, которые в соответствии с предписаниями реагируют на асинхронные сетевые нагрузки в сети заказчика. Безопасное отключение не вызывает неполадок БТЭС
- Неверное определение параметров для электрических нагрузок в режиме работы в резервной сети может привести к отключению ввиду перегрузки (индуктивный или емкостный пусковой ток составляет до 20-кратных значений номинального тока и ведет к перегрузке БТЭС!).
- В любом случае следует избегать отключения при полной нагрузке, поскольку детали подвергаются максимальным механическим нагрузкам.
- Модули БТЭС должны подключаться через заземляющий кабель к шине выравнивания потенциалов, предоставляемой заказчиком.

Техобслуживание + эксплуатационные материалы

- Регулярные техобслуживание и уход должны осуществляться квалифицированным персоналом.
 Мы рекомендуем заключить договор технического обслуживания.
- Устранение капельных утечек, утилизация отработанного масла надлежащим образом, регулярная проверка работы трубопроводов конденсата ОГ.
- Во время продолжительных перерывов в работе при выключении модуля отсоединить аккумуляторные батареи, а при перерыве в работе более 12 недель произвести гарантийную консервацию.
- Выполнить гарантийную консервацию не позднее, чем через 24 недели после поставки.

Предметный указатель

6 Предметный указатель

Б
Базовый объем поставки4
В
Вентиляция 28 Восстановительный ремонт 18 Выбросы вредных веществ 5 Вытяжной вентилятор 12
Γ
Габариты
К
Конструктивное исполнение
M
Масса 25 Микропроцессорное управление 15 Монтаж 26 Муфта 10
0
Обогрев 28 Образцы монтажного плана 27 Общие положения 4 Описание продукта 7 Опорная рама 10 Отработанный газ 28
П
Пластинчатый теплообменник

P	
Режим резервного источника электропитания	5
C	
Силовая часть генератора	10 12
Т	
Теплообменник охлаждающей жидкостиТехнические характеристики	21 28 18
Φ	
Фланцевая муфта	10
Ц	
Цвета	25
Ч	
число z	28
Ш	
Шкаф управления Шумопоглощающий кожух	
Э	
Эксплуатационные материалы Электрооборудование Элементы звукоизоляции Эмиссионные показатели Энергетический баланс	28 10 5

7 Декларация о соответствии

Декларация о соответствии требованиям Declaration of conformity Déclaration de conformité

Мы We

ESS Energie Systeme & Service GmbH, D-86899 Landsberg am Lech

Nous

заявляем под собственную ответственность, что продукты declare under our responsibility that the products déclarons sous notre seule responabilité que les produits

теплоэнергоцентрали (БТЭС) со шкафом управления

Vitobloc 200 EM-18/36	Vitobloc 200 EM-199/263
Vitobloc 200 EM-50/81	Vitobloc 200 EM-199/293
Vitobloc 200 EM-70/115	Vitobloc 200 EM-238/363
Vitobloc 200 EM-140/207	Vitobloc 200 EM-363/498
	Vitobloc 200 EM-401/549

соответствуют требованиям директив are in conformity with the requirements of the directives sont conforme aux exigencies des directives

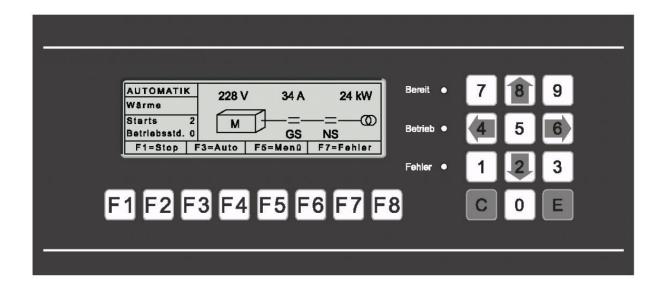
Директива Directive Directive		Стандарт Standard Norme
90/396/EEC	gas appliance directive (директива по газовому оборудованию)	*) EN 437
2006/42/EC	machinery directive (директива по машинам)	ISO 12100 ISO 13857 EN 1443 DIN 6280-14/-15
2006/95/EC	low voltage directive (директива по низковольтному оборудованию)	EN 60204-1 (VDE 0113/1) EN 60034-1/-5 (VDE 0530/18-1) EN 61439-1/-2 (VDE 0660/600) VDE 0100 Bbl.1, Teile 410 - 460, 510, 520, 560,
2004/108/EC	EMC directive (директива по ЭМС)	EN 61000-6-2 EN 55011

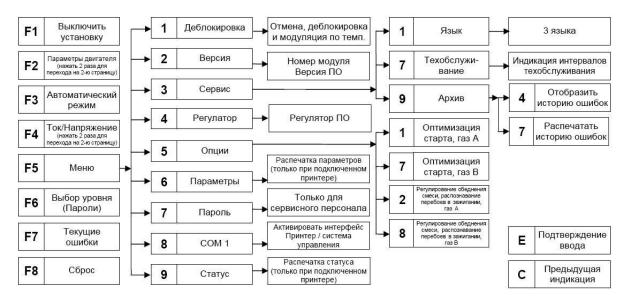
^{*)} Соблюдение основных требований Приложения I Consideration of the essential requirements of annex I Considération des exigencies fondamentales de l'annexe I

Ландсберг-ам-Лех, 20 июнь 2011 г.

ESS Energie Systeme & Service GmbH

Фишер


Визмах


ESS Energie Systeme & Service GmbH – Celsiusstraße 9 – D 86899 Landsberg am Lech Телефон 08191 – 92 79 0 Факс 08191 – 92 79 23 Email info@ess-landsberg.de www.ess-landsberg.de

Возможны изменения в связи с технологическим развитием.

Краткая инструкция

8 Краткая инструкция

Право на технические изменения сохраняется!

ESS Energie Systeme & Service GmbH Цельзиусштрассе 9 D-86899 Ландсберг ам Лех Телефон: 08191 / 9279-0 Факс: 08191 / 9279-23

info@ess-landsberg.de www.ess-landsberg.de